Everything on erosion, a comprehensive guide
All on erosion, a complete guide? Soil erosion is a complex process that depends on soil properties, ground slope, vegetation, and rainfall amount and intensity. According to Montgomery, modifications in land use are one of the most impactful ways of accelerating soil erosion. These changes then have a cascade effect as the loss of fertile topsoil cover sends millions of tons of sediments into lakes and reservoirs, changing ecosystems and impacting agricultural production and water quality. This has been the case with the Bo River in Vietnam. Despite these types of soil erosion, as we have briefly mentioned above, if it wasn’t for human activities, today’s soils would be less susceptible to erosion and more resilient. What are the human causes behind soil erosion then?
Weathering and erosion slowly chisel, polish, and buff Earth’s rock into ever evolving works of art—and then wash the remains into the sea. The processes are definitively independent, but not exclusive. Weathering is the mechanical and chemical hammer that breaks down and sculpts the rocks. Erosion transports the fragments away. Working together they create and reveal marvels of nature from tumbling boulders high in the mountains to sandstone arches in the parched desert to polished cliffs braced against violent seas.
Erosion will often occur after rock has been disintegrated or altered through weathering. Weathered rock material will be removed from its original site and transported away by a natural agent. With both processes often operating simultaneously, the best way to distinguish erosion from weathering is by observing the transportation of material. Moving water is the most important natural erosional agent. The wastage of the seacoast, or coastal erosion, is brought about mainly by the action of sea waves but also, in part, by the disintegration or degradation of sea cliffs by atmospheric agents such as rain, frost, and tidal scour. Find even more info at what is erosion website.
Water-related forest ecosystem services include the provision, filtration and regulation of water, along with stream ecosystem support and water-related hazards control, e.g., soil protection from erosion and runoff (Bredemeier 2011). In this context, forest management practices that involve vegetation cover modifications may have a substantial impact on the provision of water-related ecosystem services (Ellison et al. 2012; Panagos et al. 2015b). Moreover, forest ecosystems interactions with water and energy cycles have been highlighted as the foundations for carbon storage, water resources distribution and terrestrial temperature balancing. Forest management may thus play a key role to meet climate change mitigation goals (Ellison et al. 2017).
Perimeter Runoff Control : This is the practice of planting trees, shrubs, and ground cover around the perimeter of your farmland which impedes surface flows and keeps nutrients in the farmed soil. Using the grass way is a specialized way of handling perimeter runoff that uses surface friction to channel and dissipate runoff. Rows of tall trees are used in dense patterns around the farmland and prevent wind erosion. Evergreen trees can provide year-round protection but deciduous trees can be adequate as long as foliage is apparent during the seasons when the soil is bare.