Critical Info Blog

Don't miss any important event

Manufacturing

Excellent Radar level measurement provider

Premium Radar level transmitter supplier factory: In addition, pressure transmitter products are widely used in steel, chemical, paper, sewage treatment, water, heat, electricity, food, non-ferrous and other industries. In addition to measuring pressure, pressure transmitters can also be derived from many uses, such as the use of differential pressure transmitters to measure flow, the use of gravity of the liquid to measure the level. There is also the use of liquid level sensors. Liquid level sensor to the container level signal into a switch signal or voltage and current signal, and then through the external circuit, intuitively let the measurer accurately know the liquid level in the container. Liquid level sensor types are many and complicated, photoelectric level sensor with accurate measurement, high precision, fast response speed, advanced technology, low power consumption and other advantages in the liquid level sensor market occupies a unique advantage for liquid level measurement. See even more details at radar level transmitter.

Remote Accessibility – Industrial processes often span across intricate and complex facilities. IIoT radar sensors grant operators and engineers the ability to access data remotely eliminating the need for physical proximity to the sensor. This functionality simplifies troubleshooting, reduces response times to irregularities and minimizes periods of inactivity. Predictive Maintenance – One of the advantages of IIoT-enabled radar sensors is their capability to anticipate maintenance requirements. By analyzing data patterns these sensors can forecast when maintenance or calibration will be necessary, allowing for intervention before problems escalate. This predictive maintenance feature significantly improves equipment reliability and lifespan.

Measurement accuracy, the accuracy of ordinary radar is generally ±10mm, and the accuracy of precision radar is ±3mm. Selection according to the actual needs of production. Range, according to actual needs, choose the antenna size. Note that the actual range is reduced in complex environments. Antenna type and antenna size, the larger the antenna size, the larger the measured range and the stronger the anti-interference ability. The antenna types of radar level gauge are rod type, bell mouth type, paraboloid and so on.

The key components are made of high-quality materials, which have strong corrosion resistance and can adapt to highly corrosive environments. Low power consumption, can use solar power to supply power, no need to build water level wells, adapt to various geographical environments, no impact on water flow, and more convenient installation and maintenance. The parameter setting is convenient, and the false echo from the liquid surface to the antenna can be automatically identified by the software carried by itself to eliminate the interference.

Any appreciable gain in boiler feedwater achieved through the process reduces the amount of energy (fuel) required at the boiler— in fact, every 10.8°F (6°C) rise in boiler feedwater amounts to a one percent savings in fuel cost. Inadequate level controls can inhibit the deaeration process (level too high) or reduce/shutdown feedwater flow to the boiler (level too low). The former affects hardware longevity and efficiency, while the latter risks production losses and possible damage to pumps.

In addition, some silos in cement plants are very high, such as homogenizing silos of 50cm. It takes time and energy to board high silos to debug radar, so it is recommended to choose HART handheld operators that can be debugged remotely in the central control room. In the central control room, the range and other basic parameters can be set, and the radar echo waveform can be observed, and the waveform can be used for remote diagnosis and debugging, greatly reducing the on-site work intensity of the staff, to avoid the risk of climbing operation. The smart radar level gauge commonly used at present also has a function similar to “driving recorder”, that is, when the material surface mutation occurs on the scene, it can capture the radar echo waveform at that time, which is very useful for debugging the silo under complex conditions.

KAIDI level transmitter manufacturer is dedicated in providing complete customized solutions for a wide range of industrial automation process applications – in material level, liquid flow, pressure and temperature. We are constantly developing and innovating, our core vision – “to provide solutions that exceed customers’ expectations. In 2012, the company successfully expanded its operations both locally and internationally, achieving global success and recognition for quality fork type level switch, magnetic level gauge products and services. Read more information on kaidi86.com. The Magnetic Level Gauge all use vacuum tube technology, with a lifespan of 3-5 years, and protection grade is up to IP68, not easy to fade.

In the measurement circuit of the radar level gauge, when there is additional DC current and voltage, it is DC interference. In severe cases, the measuring instrument will not work properly. The sources of DC interference are as follows: AC interference can be divided into line-to-line interference and ground interference. Inter-line interference refers to the AC voltage between the output ends of the radar level gauge (compensation line) under external influence. This interference is also known as lateral, common mode or common mode interference. Generally speaking, the line-to-line interference voltage can reach several millivolts or even tens of millivolts.

For the ultrasonic instrument that continuously measures the liquid level, when the temperature of the liquid to be measured changes greatly, the change of the propagation speed of the sound wave should be compensated. The connecting cable between the detector and the converter should take anti-electromagnetic interference measures. The structure of the ultrasonic level sensor should be determined according to the process requirements and on-site working conditions.

There is AC interference and the voltage is high. For example, for the radar level meter used in the production line, the power supply requirement is 24VDC (typical value), but in the on-site measurement, it is found that the power supply is displayed as 27.2V, which is significantly higher than 24VDC, resulting in a large measurement result and even a radar level meter. crash phenomenon. The installation position of the radar level meter is incorrect, which leads to deviations in the measurement. For example, the accumulation of aggregates in the transfer bin is a “mountain”-shaped cone, but only one radar level meter is installed near the discharge port of the return belt. , the installation position is too close to the discharge opening of the return belt, and at the same time, it is too far from the discharge opening of the feeding belt on both sides. Just below the radar level meter is the drop point of the return belt. If the distance is too close, the aggregate in the falling process will interfere with the radar level meter and form false reflections.